MAT4111

Premier semestre — 2021–2022

Fiche 3: Compléments sur les anneaux (3ème partie)

- **1.** Soit A un anneau commutatif tel que A[X] est factoriel. Montrer que A est factoriel.
- **2.** Soit *A* un anneau factoriel et K = Fr(A) son corps des fractions. Soient $P, Q \in A[X]$ avec Q primitif. Montrer que si Q|P dans K[X], alors Q|P dans A[X].
- **3.** (a) Soient $n \in \mathbb{N}$ et $p \in \mathbb{N}$ premier.
 - (i) Montrer que la valuation *p*-adique de *n*! est donnée par

$$v_p(n!) = \sum_{\ell \ge 1} \left\lfloor \frac{n}{p^{\ell}} \right\rfloor.$$

(ii) Soit $(n_N, \dots, n_0)_p$ l'écriture de n en base p, i.e. on a $n = \sum_{\ell=0}^N n_\ell p^\ell$ avec $n_\ell \in \{0, \dots, p-1\}$. Montrer que

$$v_p(n!) = \frac{n-s}{p-1}$$
, avec $s = \sum_{\ell=0}^{N} n_{\ell}$.

- (iii) Utiliser les formules précédentes pour montrer que les coefficients binomiaux sont des entiers.
- (b) Soit A un anneau factoriel et $a,b,c \in A$ non nuls tels que a+b+c=0. Étant donné π un irréductible de A, montrer qu'au moins deux éléments parmi a, b et c ont la même valuation π -adique.
- (c) Résoudre dans \mathbb{Z}^3 l'équation $x^3 + 2y^3 + 4z^3 = 0$.
- **4.** Soit *A* un anneau factoriel et soient $a \in A \setminus \{0\}$ et $m \ge 2$. Montrer que si $a^m = uv$ avec u et v premiers entre eux dans A, alors il existe $c, d \in A^\times$ et $\bar{u}, \bar{v} \in A$ tels que $u = c\bar{u}^m$ et $v = d\bar{v}^m$.
- 5. Une équation diophantienne. On souhaite résoudre l'équation $y^3-x^2=2$ dans $\mathbb{Z}.$
- (a) En utilisant la même méthode que pour les entiers gaussiens, montrer que $\mathbb{Z}[i\sqrt{2}]$ est euclidien (donc factoriel) et déterminer ses éléments inversibles.
- (b) Soit $(x,y) \in \mathbb{Z}^2$ une solution de l'équation $y^3 x^2 = 2$. Montrer que $x + i\sqrt{2}$ et $x i\sqrt{2}$ sont premiers entre eux dans $\mathbb{Z}[i\sqrt{2}]$. En déduire que $x + i\sqrt{2}$ et $x i\sqrt{2}$ sont des cubes dans $\mathbb{Z}[i\sqrt{2}]$. Conclure.
- **6.** (a) Soit $P \in k[X]$ un polynôme unitaire de degré $d \ge 1$ à coefficients dans un corps k.
 - (i) On suppose dans cette question que k est de caractéristique nulle. Montrer que P et P' sont premiers entre eux si et seulement P est sans facteur carré (de degré supérieur ou égal à 1). En déduire que P n'a que de racines simples dans toute extension de k si et seulement si P et P' sont premiers entre eux.

(ii) Si k est de caractéristique p, montrer que si $Q \in k[X]$ est de dérivée nulle, alors il existe un polynôme $S \in k[X]$ tel que $Q(X) = S(X^p)$. En déduire que l'équivalence précédente est remplacée par :

P et P' premiers entre eux ssi P sans facteur carré et sans facteur du type $S(X^p)$.

- (b) Soit $P \in \mathbb{Q}[X]$ irréductible. Que peut-on dire de la multiplicité de ses racines dans \mathbb{C} ?
- (c) Soient $R_1, R_2 \in \mathbb{Q}[X]$ irréductibles unitaires. Montrer que s'il existe $\alpha \in \mathbb{C}$ tel que $R_1(\alpha) = R_2(\alpha) = 0$, alors $R_1 = R_2$.
- (d) Soit $P = (X a)^3 (X b)^2 (X c) \in \mathbb{Q}[X]$ avec $a, b, c \in \mathbb{C}$ distincts. Montrer que $a, b, c \in \mathbb{Q}$.
- 7. Soit $P \in \mathbb{R}[X]$. Montrer que les conditions suivantes sont équivalentes :
- (i) pour tout $x \in \mathbb{R}$, $P(x) \ge 0$;
- (ii) il existe $A, B \in \mathbb{R}[X]$ tels que $P = A^2 + B^2$.
- **8.** La notion de factorialité généralise la propriété de décomposition unique en facteurs premiers de \mathbb{Z} mais cela ne veut pas dire que les anneaux factoriels vérifient toutes les propriétés de \mathbb{Z} . On considère un corps k.
- (a) Montrer que k[X,Y] et $\mathbb{Z}[X]$ sont des exemples d'anneaux factoriels qui ne sont pas de Bézout (on rappelle qu'un *anneau de Bézout* est un anneau intègre tel que tout idéal de type fini est principal).
- (b) Montrer que l'anneau $k[X_i:i\in\mathbb{N}]=\cup_{i\in\mathbb{N}}k[X_0,\ldots,X_n]$ est factoriel mais pas noethérien.
- * 9. Soit *A* un anneau commutatif intègre. On rappelle qu'un élément $x \in Fr(A)$ est *entier* sur *A* s'il existe un polynôme unitaire $Q \in A[X]$ tel que Q(x) = 0. On dit que *A* est *intégralement clos* si tout élément $x \in Fr(A)$ qui est entier sur *A* appartient à *A*.
 - (a) Montrer que tout anneau factoriel est intégralement clos.
 - (b) Soit $d \in \mathbb{Z}^*$ un entier sans facteur carré. Montrer que si $d = 1 \pmod{4}$, alors $\mathbb{Z}[\sqrt{d}]$ n'est pas intégralement clos (donc non factoriel). *Indication*: considérer l'élément $(1 + \sqrt{d})/2$.
 - **10.** Montrer que $\mathbb{Z}[i\sqrt{d}]$ n'est jamais factoriel si $d \ge 3$. On montrera que le lemme d'Euclide n'est pas satisfait en remarquant que $2|(d+i\sqrt{d})(d-i\sqrt{d})$.
 - 11. Exemples d'anneaux non factoriels.
 - (a) Dans $\mathbb{Z}[i\sqrt{3}]$, montrer que 4 et $2(1+i\sqrt{3})$ n'ont ni PPCM ni PGCD. La fraction $4/2(1+i\sqrt{3})$ admet-elle une unique forme irréductible dans $Fr(\mathbb{Z}[i\sqrt{3}])$?
 - (b) Montrer que $A = \{P \in \mathbb{Q}[X] : P(0) \in \mathbb{Z}\}$ n'est ni factoriel ni noethérien. *Indication* : montrer que 2 est irréductible dans A et utiliser que pour tout $n \in \mathbb{N}, X = 2^n((1/2^n)X) \in A$.
 - **12.** On considère le morphisme de \mathbb{C} -algèbres $\phi: \mathbb{C}[X,Y,Z] \to \mathbb{C}[U,V]$ défini par $\phi(X) = U^2$ et $\phi(Y) = V^2$ et $\phi(Z) = UV$.
 - (a) Le morphisme ϕ est-il surjectif?
 - (b) Montrer que le noyau de ϕ est l'idéal de $\mathbb{C}[X,Y,Z]$ engendré par $XY-Z^2$.
 - (c) Montrer que l'anneau quotient $A = \mathbb{C}[X, Y, Z]/(XY Z^2)$ est intègre.
 - (d) Montrer que l'élément \bar{X} de A est un irréductible de A.

- (e) L'anneau quotient $\mathbb{C}[X,Y,Z]/(XY-Z^2)$ est-il factoriel?
- (f) Montrer que (\bar{X}, \bar{Z}) est un idéal premier de A qui contient \bar{X} .
- (g) Les éléments \bar{X} et \bar{Z} ont-ils un PGCD dans A?
- (h) Les éléments \bar{X} et \bar{Z} ont-ils un PPCM dans A?
- ★ 13. Montrer qu'un anneau factoriel et de Bézout est principal.
 - **14.** Donner toutes les implications entre les propriétés suivantes, où A est un anneau commutatif intègre :
 - (a) A est euclidien; (f) A est à PGCD;
 - (b) A est principal; (g) A vérifie la propriété D 1;
 - (c) A est noethérien; (h) A vérifie la propriété AP²;
 - (d) A est factoriel; (i) A est atomique;
 - (e) A est un anneau de Bézout; (j) A est factoriel sans restriction 3 .
 - **15.** Étudier l'irréductibilité des polynômes dans $\mathbb{Q}[X,Y]: Y-X^2, X^2+Y^2-1, X^2+Y^2+1, X^2-Y^2-1, Y^2-X^3, X^3-Y^2-X, XY^3-X^2Y-Y^2+X.$
 - **16.** (*a*) Soit $p \in \mathbb{N}$ un nombre premier. Montrer que le polynôme $X^{p-1} + \cdots + X + 1$ est irréductible sur $\mathbb{Z}[X]$.
 - Indication : poser X = Y + 1 et appliquer le critère d'Eisenstein avec p.
 - (b) Soit $A = \mathbb{Z}[T]$. Montrer que le polynôme $X^n T \in A[X]$ est irréductible.
 - **17.** Étudier l'irréductibilité des polynômes suivants sur \mathbb{Z} en les réduisant modulo des nombres premiers : X^3+4X^2-5X+7 , $5X^3+3X^2-4X-27$, $X^3-6X^2-4X-13$, $X^3+4X^2-4X+25$, $X^4+5X^3-3X^2-X+7$, X^4+7X^2+4X+1 , X^6+X^3+1 , X^7+X+1 .
 - **18.** Soit $P(X) = X^4 + 1 \in \mathbb{Z}[X]$.
 - (a) Montrer que P est irréductible sur \mathbb{Z} . *Indication* : calculer P(X+1) et appliquer le critère d'Eisenstein avec p=2.
 - (b) Montrer que *P* est réductible modulo 2, puis pour tout *p* premier impair.

^{1.} On rappelle qu'un anneau A intègre satisfait la *propriété* D si pour tout $a, b, c \in A \setminus \{0\}$, tels que a|(bc) et a et b sont premiers entre eux (i.e. si d|a et d|b, alors $d \in A^{\times}$), alors a|c.

^{2.} On rappelle qu'un anneau A intègre satisfait la *propriété AP* si tout élément irréductible de A est premier.

^{3.} On rappelle qu'un anneau A intègre est factoriel sans restriction si toute égalité $x_1 \dots x_n = y_1 \dots y_m$, avec x_i, y_j irréductibles de A pour tous $i \in \{1, \dots, n\}$ et $j \in \{1, \dots, m\}$, implique que n = m et qu'il existe une permutation $\sigma \in \mathbb{S}_n$ telle que x_i et $y_{\sigma(i)}$ sont associés pour tout $i \in \{1, \dots, n\}$.